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Lecture 10: September 30

Renormalizing the pairing. Last time, we computed a formula for the polariza-
tion hV , in the trivialization of V induced by the canonical extension. Recall that
the canonical extension admits a (unique) trivialization Ṽ ∼= O∆ ⊗C V such that
the logarithmic connection takes the simple form

∇(1⊗ v) =
dt

t
⊗Rv,

where R ∈ End(V ) is the residue of the connection at the origin; the eigenvalues
of R are real, and are contained in a fixed half-open interval I ⊆ R of length 1.
Restricting to ∆∗, we get a trivialization of V , and we showed that the polarization
hV of the variation of Hodge structure takes the form

hV (1⊗ v′, 1⊗ v′′) =
∑

α∈I
|t|2α

∞∑

`=0

L(t)`

`!
(−1)`h

(
v′α, R

`
Nv
′′
α

)
.

Here R = RS + RN is the Jordan decomposition of R, and v′α, vα′′ ∈ Eα(RS) are
the components of v′, v′′ in the α-eigenspace of RS .

Our goal is to “renormalize” the pairing, in order to make the factors |t|2αL(t)`

disappear. For that, we need a splitting of the monodromy weight filtration W• =
W•(RN ), so that we have well-defined subspaces on which we can do the rescaling. If
you worked out the exercises from last time, you know that it is possible to choose a
semisimple operator H ∈ End(V ), with integer eigenvalues, and the following three
properties:

(a) For every j ∈ Z, one has Wj = Ej(H)⊕Wj−1.
(b) One has [H,RN ] = −2RN and [H,RS ] = 0.
(c) One has h(Hv′, v′′) = −h(v′, Hv′′) for every v′, v′′ ∈ V .

Since RS and H are commuting semisimple operators, they have a simultaneous
eigenspace decomposition

V =
⊕

α∈I
j∈Z

Vα,j .

In this decomposition, Vα,j and Vβ,k are orthogonal with respect to the pairing h,
except when α = β and j + k = 0; this follows from the identities h(RSv

′, v′′) =
h(v′, RSv′′) and h(Hv′, v′′) = −h(v′, Hv′′).

Now let us write v′ =
∑
α,j v

′
α,j , and similarly for v′′. Then

hV (1⊗ v′, 1⊗ v′′) =
∑

α∈I
|t|2α

∞∑

`=0

L(t)`

`!
(−1)`h

(
v′α, R

`
Nv
′′
α

)

=
∑

α∈I
|t|2α

∞∑

`=0

L(t)`

`!

∞∑

j=0

(−1)`h
(
v′α,j , R

`
Nv
′′
α,2`−j

)
,

because v′α,j and R`Nv
′′
α,k are h-orthogonal unless j + k = 2`. The formula suggests

that we should rescale by the factor |t|−αL(t)−j/2 on the subspace Vα,j , in order to
get rid of the terms involving t. Define two new vectors w′, w′′ ∈ V by the rule

v′α,j = |t|−αL(t)−j/2w′α,j and v′′α,j = |t|−αL(t)−j/2w′′α,j .

Substituting into the formula from above gives

hV (1⊗ v′, 1⊗ v′′) =
∑

α∈I

∞∑

`=0

1

`!

∞∑

j=0

(−1)`h
(
w′α,j , R

`
Nw
′′
α,2`−j

)
= h(w′, e−RNw′′),
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and so all the divergent terms |t|2αL(t)` have indeed gone away. It remains to write
the result in a more useful form. Since RS acts on Vα,j as multiplication by α, and
H as multiplication by j, it is easy to see that

w′α,j = |t|αL(t)j/2v′α,j = e−
1
2L(t)RSe

1
2 logL(t)Hv′α,j ,

and hence that w′ = e−
1
2L(t)RSe

1
2 logL(t)Hv′, with a similar formula for w′′. Putting

this back into the result of the above calculation, we get

hV (1⊗ v′, 1⊗ v′′) = h(w′, e−RNw′′) = h(e−
1
2RNw′, e−

1
2RNw′′)

= h
(
e−

1
2RN e−

1
2L(t)RSe

1
2 logL(t)Hv′, e−

1
2RN e−

1
2L(t)RSe

1
2 logL(t)Hv′′

)
.

(10.1)

Convergence of the Hodge filtration. Now let us interpret the result. Recall
that the Hodge bundles F pV , in the given trivialization of V , are described by
a holomorphic mapping Ψ: ∆∗ → Ď. Since the variation of Hodge structure is
polarized, this means that at each point t ∈ ∆∗, the filtration FΨ(t) gives a Hodge
structure of weight n on the vector space V , which is polarized by the pairing
(v′, v′′) 7→ hV (1⊗ v′, 1⊗ v′′). Because of (10.1), this means that the new filtration

e−
1
2RN e−

1
2L(t)RSe

1
2 logL(t)HFΨ(t)

gives a Hodge structure of weight n on V that is polarized by the constant pairing h.
But Hodge structures of this kind are exactly parametrized by the period domain,
and so we conclude that

t 7→ e−
1
2RN e−

1
2L(t)RSe

1
2 logL(t)HΨ(t)

is a (now only real-analytic) mapping from the punctured disk ∆∗ into the period
domain D. The discussion about renormalizing the pairing now suggests the fol-
lowing theorem, which is the central result in the theory of polarized variations of
Hodge structure on the punctured disk.

Theorem 10.2. With notation as above, the mapping

∆∗ → D, t 7→ e−
1
2RN e−

1
2L(t)RSe

1
2 logL(t)HΨ(t),

extends continuously over the origin in ∆. More precisely, the following is true:

(a) The limit

F̂H = lim
t→0

e−
1
2L(t)RSe

1
2 logL(t)HΨ(t) ∈ Ď

exists, and e−
1
2RN F̂H ∈ D. In other words, e−

1
2RN F̂H defines a Hodge

structure of weight n on the vector space V , polarized by the pairing h.
(b) The filtration F̂H is compatible with the semisimple operators RS and H,

in the sense that RSF̂
p
H ⊆ F̂ pH and HF̂ pH ⊆ F̂ pH for every p ∈ Z.

(c) One has RN F̂
p
H ⊆ F̂ p−1

H for every p ∈ Z.

This result contains parts of what Schmid calls the “nilpotent orbit theorem”
and the “SL(2)-orbit theorem” in his paper. Schmid obtains a similar result near
the end of his paper, after proving the two orbit theorems by another method; of
course, his theorem is stated only for variations of Hodge structure that are defined
over R and have quasi-unipotent monodromy.

Note. Let me stress again that this result is, at least conceptually, very simple: If
we use the canonical extension to trivialize the vector bundle V , and if we rescale
the pairing to account for the different rates of growth |t|2αL(t)`, then our family
of polarized Hodge structures of weight n converges to a well-defined limit, which
is again a polarized Hodge structure of weight n. (Of course, the limit depends on
the choice of semisimple operator H.) People usually say that the limit is a “mixed
Hodge structure”, but I think our point of view makes more sense.
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From Theorem 10.2, one can deduce most of the other results that Schmid proves
in his paper (with the exception of the precise asymptotics in the SL(2)-orbit the-
orem), such as the famous estimates for the Hodge norm. We will also see how to
deduce the existence of a “limiting mixed Hodge structure” (which Schmid deduces
from his SL(2)-orbit theorem). This kind of result is best stated in the language
of polarized Hodge-Lefschetz structures from Lecture 3, which now make another
surprising appearance. Recall that Hodge-Lefschetz structures are representations
of the Lie algebra sl2(C) with compatible Hodge structures. In the case at hand, the
vector space V becomes a representation of sl2(C) by letting the matrix H ∈ sl2(C)
act as the semisimple operator H ∈ End(V ), and by letting Y ∈ sl2(C) act as the
nilpotent operator RN ∈ End(V ).

Theorem 10.3. Each eigenspace Vk = Ek(H) has a Hodge structure of weight

n + k, whose Hodge filtration agrees with the filtration induced by F̂H . With these
Hodge structures, and with the sl2(C)-action induced by H and RN , the vector space

V =
⊕

k∈Z
Vk

becomes a Hodge-Lefschetz structure of central weight n, polarized by the hermitian
pairing h. Moreover, the operator RS ∈ End(V ) is an endomorphism of this Hodge-
Lefschetz structure.

In particular, this says that the hermitian pairing

(v′, v′′) 7→ (−1)`h(v′, R`Nv
′′)

polarizes the Hodge structure of weight n+ ` on the “primitive” subspace

kerR`+1
N : V` → V−`−2.

You may remember that this expression already showed up as the coefficient of L(t)`

in our formula for the pairing in Lecture 9. Once we have proved Theorem 10.2, we
will see that Theorem 10.3 can be deduced by (very clever) linear algebra methods.

Some examples. Before diving into the proof of Theorem 9.1, let us go through
a few concrete examples. In these examples, one can verify the general results from
above by hand. Most of them are about Hodge structures of “elliptic curve” type,
but things will look simpler if we use a different description than in Example 5.4.

Example 10.4. As in Example 5.4, we consider Hodge structures of weight 1 on C2,
but this time, we write the hermitian pairing in the form

h
(
(x′, y′), (x′′, y′′)

)
= y′x′′ + x′y′′.

This also has signature (1, 1), but differs from the pairing in Example 5.4 by a simple
coordinate change. As before, the filtration is determined by the one-dimensional
subspace F 1 ⊆ C, and so Ď = P1. In order for the subspace

F 1 = C · (x, y)

to correspond to a polarized Hodge structure of weight 1, we need

0 < (−1)1h
(
(x, y), (x, y)

)
= −

(
yx+ xy

)

or equivalently, Re(yx) < 0. Thus the period domain is D = H̃ in this case, with a

point z ∈ H̃ corresponding to the Hodge structure

C · (1, z)⊕ C · (z, 1).
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Note that I am using (1, z) instead of (z, 1), in order to make the results in the next
few examples come out more nicely. You can check that a matrix

(
a b
c d

)
∈ GL2(C)

lies in the subgroup GR iff ac and bd are purely imaginary and ad+ bc = 1. Since
(
a b
c d

)(
1
t

)
=

(
a+ bt
c+ dt

)
,

such a matrix then acts on H̃ by the formula z 7→ (a + bz)−1(c + dz). (Again, we
could have used the usual fractional transformations here, but then some of the
results in the following examples would look less nice.)

Example 10.5. Given a polarized variation of Hodge structure of the above type on
∆∗, the period mapping is now simply a holomorphic mapping f : H̃→ H̃. If

T =

(
a b
c d

)
∈ GR

is the monodromy matrix, then we have

f(z + 2πi) =
c+ dz

a+ bz

for every z ∈ H̃. Let us consider the special case where the monodromy is trivial,
so T = id. Here Theorem 10.2 (with R = H = 0) is claiming that the period
mapping extends holomorphically to the entire disk. We can verify this as follows.
From f(z + 2πi) = f(z), we get than f(z) = g(ez) for a holomorphic function

g : ∆∗ → H̃. Now H̃ is isomorphic to the unit disk, and so the Riemann extension
theorem implies that g extends to a holomorphic function g : ∆→ C. Since g is an
open mapping, it follows that g(0) ∈ H̃; now g : ∆→ H̃ is the desired extension of
the period mapping.

Example 10.6. For another example of a period mapping, we can take

f : H̃→ H̃, f(z) = z.

In this case, the monodromy matrix can be

T =

(
1 0

2πi 1

)
,

and if we work with the interval I = [0, 1), then

R = RN =

(
0 0
1 0

)

is one of the standard generators of sl2(C). According to Theorem 9.1, we should
consider the “untwisted period mapping”

e−zRf(z) =

(
1 0
−z 0

)
· z = 0.

Note that the limit trivially exists, but is not a point of the period domain H̃.
Indeed, Ψ(0) corresponds to the filtration with

F 1 = C · (1, 0),

but the pairing h is not negative definite on this subspace.
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Example 10.7. Lastly, let us consider the special case of unipotent monodromy.
Suppose that f : H̃→ H̃ is a holomorphic mapping with

f(z + 2πi) = f(z) + 2πic,

which corresponds to taking

T =

(
1 0

2πic 1

)
.

The fact that T ∈ GR means that c ∈ R is real; for simplicity, let us suppose that
c ∈ Z. Once again,

e−zR =

(
1 0
−cz 1

)
,

and so the “untwisted period mapping” corresponds to the function f(z)−cz, which
is invariant under the substitution z 7→ z + 2πi. This gives us

f(z) = cz + g(ez),

for a holomorphic function g : ∆∗ → C. Now Theorem 9.1 is saying that g extends
to a holomorphic function on the entire disk ∆. In this toy example, we can prove
this as follows. Exponentiating both sides and writing t = ez, we get

tceg(t) = ef(z) ∈ ∆∗,

and so by Riemann’s extension theorem, tceg(t) extends holomorphically to ∆. Near
the origin, we can write the resulting holomorphic function as tkeh(t), where k ≥ 0
is the order of vanishing at the origin, and h(t) is holomorphic. Then

eg(t)−h(t) = tk−c,

and if k − c 6= 0, then g(t)−h(t)
k−c would be a holomorphic logarithm function on

a punctured neighborhood of the origin, which we know cannot exist. So the
conclusion is that eg(t), and hence also g(t) itself, extends holomorphically to the
entire disk; we also find that c ≥ 0.

Exercise 10.1. In the setting of Theorem 10.2, there is another way to see why

e−
1
2RN e−

1
2L(t)RSe

1
2 logL(t)HΨ(t) ∈ D.

Here is how this goes:

(a) Prove the identity

e−
1
2RN e−

1
2L(t)RSe

1
2 logL(t)He−zR = e

1
2 logL(t)He

1
2 (z−z)R.

(Hint: First check what happens on the subspace Vα,j .)
(b) Show that the Lie algebra of the group GR consists of all A ∈ End(V ) with

the property that A∗ = −A, where A∗ is the adjoint with respect to h.
(c) Conclude that if x ∈ R is real, and y ∈ C purely imaginary, then both exH

and eyR are elements of GR.
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